自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(410)
  • 资源 (23)
  • 论坛 (6)
  • 收藏
  • 关注

原创 Spark计算引擎实战汇总

文章目录一.安装二.理论基础三.实战2.1 hbase2.2 sql2.3 机器学习2.4 Graphx2.5 报错四.源码一.安装Spark介绍系列02–安装集群:https://limeng.blog.csdn.net/article/details/82803783hive on spark安装:https://limeng.blog.csdn.net/article/details/71023759二.理论基础Dataflow Model总结:https://limeng.blog

2020-12-31 17:44:22 152 1

原创 Java并发实战汇总

一.并发理论基础并发编程Bug源头:https://limeng.blog.csdn.net/article/details/109020395Java内存模型(解决可见性和有序性问题):https://limeng.blog.csdn.net/article/details/109262247互斥锁:https://limeng.blog.csdn.net/article/details/109551131死锁:https://limeng.blog.csdn.net/article/detai

2020-12-31 17:12:54 138 1

原创 Flink 运行架构

Flink 调度Flink-执行逻辑一.角色作用ClientClient 为提交 Job 的客户端,可以是运行在任何机器上(与 JobManager 环境连通即可)。提交 Job 后,Client 可以结束进程(Streaming的任务),也可以不结束并等待结果返回。JobManagerJobManager 具有许多与协调 Flink 应用程序的分布式执行有关的职责:它决定何时调度下一个 task(或一组 task)、对完成的 task 或执行失败做出反应、协调 checkpoint、并

2021-02-14 13:04:51 2454 8

原创 Flink Asynchronous IO异步操作

文章目录一.简介二.原理2.1 API2.2 实现三.示例一.简介在流式处理的过程中, 在中间步骤的处理中, 如果涉及到一些费事的操作或者是外部系统的数据交互, 那么就会给整个流造成一定的延迟。在 Flink 的 1.2 版本中引入了 Asynchronous I/O,能够支持异步的操作,以提高 flink 系统与外部数据系统交互的性能及吞吐量。图片来源官网图中棕色的长条表示等待时间,可以发现网络等待时间阻碍了吞吐和延迟,为了解决同步访问的问题,异步模式可以并发地处理多个请求和回复,也就是说,你可

2021-01-23 18:12:38 170

原创 Flink报错Create BatchTableEnvironment failed

Flink DataSet Table相互之间转换报错Exception in thread "main" org.apache.flink.table.api.TableException: Create BatchTableEnvironment failed. at org.apache.flink.table.api.scala.BatchTableEnvironment$.create(BatchTableEnvironment.scala:308) at org.apache.flink.

2021-01-20 16:58:34 74

原创 Flink报错 Could not instantiate the executor_ Make sure a planner module is on the classpath

用Flink Table 处理数据时候报错SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]Exception in thread "main" org.apache.flink.table.api.TableException: Could not instantiate the executor. Make sure a planner module is on the classpath at org.apac

2021-01-20 16:54:32 77

原创 Flink DataStream/DataSet Table 之间的转换

文章目录一.简介二.示例2.1 将Table转换为DataStream2.2 将Table转换为DataSet2.3 DataStrearm 转换Table对象2.4 DataSet 转换Table对象一.简介DataStream/DataSet Table 之间互相转换:DataStream/DataSet 转换 TableTable 转换DataStream/DataSet二.示例2.1 将Table转换为DataStream有两种模式可以将 Table转换为DataStream

2021-01-20 16:52:05 94

原创 Flink Window Evictor

一.简介Flink可在Window Function执行前/后,添加Evictor在原Window中剔除元素。Keyed Windowsstream .keyBy(...) <- keyed versus non-keyed windows .window(...) <- required: "assigner" [.trigger(...)] <- opti

2021-01-20 15:15:01 133

原创 Flink Window Trigger

一.简介在window操作时,有三个重要点:窗口分配器(assigner),决定着流入flink的数据,该属于哪个窗口。时间戳抽取器/watermark生成器,抽取时间戳并驱动着程序正常执行。trigger,决定着数据啥时候落地。flink 有很多内置的触发器,对于基于事件事件窗口触发器叫做EventTimeTrigger,其实,我们要实现基于事件时间的窗口随意输出,比如1000个元素触发一次输出,那么我们就可以通过修改这个触发器来实现。二.实现在window使用过程中,我们发现即使我们不

2021-01-14 12:22:20 148 1

原创 Spark 图计算实战

文章目录一.GraphX 介绍二.GraphX 实现分析2.1 图的切分方式2.2 数据处理2.3 BSP模型2.4 设计核心三.GraphX 实例3.1 创建3.2 转换操作3.2.1 基本信息3.2.2mapVertices3.2.3 mapEdges3.2.4 mapTriplets3.3 结构操作3.3.1 reverse3.3.2 subgraph(重点)3.3.3 mask3.3.4 groupEdges3.4 聚合操作3.4.1 collectNeighbors3.4.2 collectNei

2021-01-09 15:59:34 173 1

原创 WeDataSphere开源社区贡献奖

一.简介该社区由微众银行开源组成,里面汇聚各种数据大佬,开源很多服务,例如:数据计算中间件,机器学习,数据质量,数据交换,调度,数据开发服务等等。二.经历从2019年开始进入社区,从事研究,把社区的数据服务,整合到公司,整合出来数据中台,帮助公司的数据建设向前一大部分,同时把一些结果提交到社区中,互相学习。背景业务发展前期,为了快速实现业务的需求,烟囱式的开发导致企业不同业务线,甚至相同业务线的不同应用之间,数据都是割裂的。两个数据应用的相同指标,展示的结果不一致,导致运营对数据的信任度下降。

2021-01-04 19:29:18 131 1

原创 Java并发ForkJoin

文章目录一.简介二.Fork/Join2.1 分治任务模型2.2 API2.3 ForkJoinPool 工作原理三.示例一.简介并发编程可以分为三个层面的问题,分别是分工、协作和互斥,用类比现实世界的一些情况去理解并发任务,可以把线程池、Future、CompletableFuture 和 CompletionService 都列到了分工里面。还有一种“分治”的任务模型,指的是把一个复杂的问题分解成多个相似的子问题,然后再把子问题分解成更小的子问题,直到子问题简单到可以直接求解。分治思想在很多领域

2020-12-31 17:01:32 66 1

原创 2020年总结:数据里有你、我、他,关键还是自己

文章目录一.前言二.社区三.工作四.展望一.前言2020年年底了,无论是自身还是社会上都发生很多事情,或喜或悲都将过去,总结下自身,展望未来,做更好的自己。本人负责数据中台数据引擎基础架构设计和中间件开发,专注云计算大数据方向。二.社区阅读由于专注领域关系,平时每天早上会阅读一篇极客时间文章,晚上阅读一些图书,丰富自己知识素养。极客时间阅读数据阅读范围:大数据组件架构原理算法编程语言原理JVM计算机组成原理微服务离线计算实时计算交互计算数据库原理数据中台系

2020-12-30 16:04:19 2563 5

原创 Java并发CompletionService

一.简介CompletionService的应用场景:批量提交异步任务。CompletionService将线程池Executor和阻塞队列BlockingQueue融合在一起,使得批量异步任务的管理更简单。CompletionService能够让异步任务的执行结果有序化,先执行完的先进入阻塞队列,避免无谓的等待。二.API接口public interface CompletionService<V> {// 提交Callable类型的任务Future<V>

2020-12-29 21:18:31 77 1

原创 Java并发CompletableFuture

文章目录一.简介二.API2.1 创建CompletableFuture对象2.2 CompletionStage2.3 异常处理三.示例一.简介异步化,是以并行方案得以实施的基础,更深入地讲其实就是:利用多线程优化性能这个核心方案得以实施的基础。CompletableFuture 满足一些简单的异步编程需求。二.API2.1 创建CompletableFuture对象public static CompletableFuture<Void> runAsync(Runnable r

2020-12-27 21:10:23 133

原创 GitChat-Spark 图计算实战

Spark GraphX 是一个分布式图处理框架,它是基于 Spark 平台提供对图计算和图挖掘简洁易用的而丰富的接口,极大的方便了对分布式图处理的需求。本文以多年的应用实战的角度去讲解把相关知识串联起来(集团谱系为例)。GraphX 介绍GraphX 实现分析GraphX 实例相关调优集团成员实战分析受益所有人实战分析实际控制人实战分析适合人群: 对数据处理感兴趣的技术人员订阅地址:https://gitbook.cn/gitchat/activity/5fd2302ba78aef6

2020-12-21 17:40:39 125

原创 Hdfs FileSystem Client

一.示例Java抽象类org.apache.hadoop.fs.FileSystem定义了hadoop的一个文件系统接口。Hadoop中关于文件操作类基本上全部是在"org.apache.hadoop.fs"包中,这些API能够支持的操作包含:打开文件,读写文件,删除文件等。Hadoop类库中最终面向用户提供的接口类是FileSystem,该类是个抽象类,只能通过来类的get方法得到具体类。public class HDFSFileSystem { public static void mai

2020-12-21 16:22:21 98

原创 Java并发Future

一.简介ThreadPoolExecutor线程池获取任务执行结果,用到Future可以实现。二.获取执行结果Java通过ThreadPoolExecutor 提供3个submit()方法和1个FutureTask 工具类来支持获得任务执行结果的需求。// 提交Runnable任务Future<?> submit(Runnable task);// 提交Callable任务<T> Future<T> submit(Callab

2020-12-19 16:05:04 135 1

原创 Executor与线程池

文章目录一.简介二.线程池2.1 简介2.2 使用Java中线程池2.3 注意一.简介创建对象,仅仅是在JVM的堆里分配一块内存而已;而创建一个线程,却需要操作系统内核的API,然后操作系统要为线程分配一系列的资源,这个成本很高了,所以线程是一个重量级的对象,应该避免频繁创建和销毁。一般池化思想线程池和一般意义的池化资源是不同,一般意义的池化资源,都是需要资源的时候就调用 acquire() 方法来申请资源,用完之后就调用 release() 释放资源。若你带着这个固有模型来看并发包里线程池相关

2020-12-05 21:16:42 220

原创 并发容器

文章目录一.同步容器二.并发容器2.1 List2.2 Map2.3 Set2.4 Queue一.同步容器Java中的容器主要可以分为四大类,分别是List、Map、Set和Queue,但并不是所有的Java容器都是线程安全的,例如:我们常用的ArrayList、HashMap就不是线程安全。保证容器线程安全方法把非线程安全的容器封装在对象内部,控制访问路径。SafeArrayList<T>{ //封装ArrayList List<T> c = new Arra

2020-11-29 15:04:26 279 1

原创 无锁工具类

文章目录一.示例二.无锁方案实现原理三.原子类3.1 原子化的基本数据类型3.2 原子化的对象引用类型3.3 原子化数组3.4 原子化对象属性更新器3.5 原子化的累加器一.示例累加器示例。public class Test { AtomicLong count = new AtomicLong(0); void add10K() { int idx = 0; while(idx++ < 10000) { count.getAndIncrement(

2020-11-23 20:52:42 187

原创 Flink AggregateFunction

一.aggregate 函数Flink的AggregateFunction是一个基于中间计算结果状态进行增量计算的函数,由于是迭代计算方式,所以,在窗口处理过程中,不用缓存整个窗口数据,所以效率执行比较高。该函数会将给定的聚合函数应用于每个窗口和键,对每个元素调用聚合函数,以递增方式聚合值,并将每个键和窗口的状态保持在一个累加器。@PublicEvolvingpublic interface AggregateFunction<IN, ACC, OUT> extends Function

2020-11-22 17:41:54 518

原创 Spark REPL

文章目录一.Scala REPL二.Spark REPL三.总结一.Scala REPLscala repl(“Read-Evaluate-Print-Loop”) 是一个交互式命令行解释器,它提供了一个测试scala代码的环境。ILoop和IMain是其核心实现。属性有用的REPL功能包括:REPL的IMain绑定到$intp。REPL的最后一个异常绑定到lastException。使用标签完成。用于//print<tab>显示键入的重复标记。使用:help的命令列表。

2020-11-22 14:53:09 233

原创 Java并发CountDownLatch和CyclicBarrier

文章目录一.简介二.CountDownLatch三.CyclicBarrier四.总结一.简介CountDownLatch和CyclicBarrier是jdk concurrent包下工具类,提供一种控制并发流程的工具。二.CountDownLatch构造类,常用apipublic CountDownLatch(int count) { }; //参数count为计数值public void await() throws InterruptedException { }; //调用awa

2020-11-19 12:05:49 150

原创 Java并发StampedLock

文章目录一.简介二.锁模式三.总结一.简介读写锁(ReadWriteLock)允许多个线程同时读共享变量,适用于读多写少的场景,读多写少场景中比这更快的方案就是StampedLock,比读写锁性能好。二.锁模式ReadWriteLock支持两种模式:一种是读锁,一种是写锁,而StampedLock支持三种模式,分别:写锁、悲观读锁和乐观读。其中,写锁、悲观读锁的语义和ReadWriteLock的写锁、读锁的语义非常类似,允许多个线程同时同时获取悲观读锁,但是只允许一个线程获取写锁,写锁和悲观读锁是互

2020-11-18 23:57:31 239

原创 Java并发ReadWriteLock

文章目录一.简介二.读写锁三.示例-缓存一.简介读多写少场景,实际工作中,为了优化性能,我们经常会使用缓存,例如缓存元数据、缓存基础数据等,这就是一种典型的读多写少应用场景,缓存之所以能提升性能,一个重要的条件就是缓存的数据一定是读多写少的,例如元数据和基础数据基本上不会发生变化(写少),使用它们的地方却很多(读多)。针对这种场景,Java SDK并发包提供了读写锁——ReadWriteLock,非常容易使用,并且性能很好。二.读写锁允许多个线程同时读共享变量;只允许一个线程写共享变量;如果

2020-11-18 01:18:34 225 1

原创 Java并发Semaphore

文章目录一.信号量二.信号量模型三.使用信号量3.1 示例-累加器3.2 示例-限流器一.信号量Semaphore也是一个线程同步的辅助类,可以维护当前访问自身的线程个数,并提供了同步机制。使用Semaphore可以控制同时访问资源的线程个数,例如,实现一个文件允许的并发访问数。二.信号量模型概况为:一个计数器,一个等待队列,三个方法。在信号模型里,计数器和等待队列对外是透明,所以只能通过信号模型提供的三个方法来访问它们,这三个方法分别是:init()、down()、up()。这三个方法详细语

2020-11-16 23:37:54 176

原创 Java并发Lock和Condition

文章目录一.简介二.原理2.1 管程2.2 可见性2.3 可重入锁2.4 公平锁与非公平锁2.5 用锁的最佳实践2.6 示例一.简介Java SDK并发包通过Lock和Condition两个接口来实现管程,其中Lock用于解决互斥问题,Condition 用于解决同步问题。二.原理2.1 管程在 Java 的 1.5 版本中,synchronized 性能不如 SDK 里面的 Lock,但 1.6 版本之后,synchronized 做了很多优化,将性能追了上来,所以 1.6 之后的版本又有人推荐

2020-11-15 17:20:02 223

原创 git fatal:refusing to merge unrelated histories

会在git pull或者git push中都有可能会遇到,这是因为两个分支没有取得关系。一.连接远程仓库本地项目关联#创建新文件夹mkdir xxx#进入cd xxx#初始化Git仓库git init#提交改变到缓存git commit -m 'description'#本地git仓库关联GitHub仓库git remote add originurl#提交到GitHub中git push -u origin master二.解决问题git merge master

2020-11-13 18:00:57 190

原创 死锁

一.简介根据上一篇文章互斥锁死锁实验,死锁定义:一组互相互相竞争资源的线程因互相等待,导致“永久”阻塞的现象。class Account { private int balance; // 转账 void transfer(Account target, int amt){ // 锁定转出账户 synchronized(this){ ① // 锁定转入账户 synchronized(target){ ② if (this.ba

2020-11-12 12:35:32 1176 5

原创 互斥锁

文章目录一.原子问题二.锁模型三.解决方案2.1 synchronized四.保护资源4.1 关系简介4.2 保护没有关联关系的多个资源4.3 保护有关联关系的多个资源4.4 小结一.原子问题在并发编程Bug源头中介绍过,原子问题的源头是线程切换,解决方案禁用线程切换。CPU控制线程切换,无论单核CPU还是多核CPU,保证同一时刻只有一个线程执行,称为互斥,就能够保证对共享变量的修改时互斥,就能保证原子性。二.锁模型互斥的解决方案是锁,把一段需要互斥执行的代码称为临界区。这个锁模型展示的是锁和

2020-11-07 19:35:54 321

原创 Google论文、开源与云计算

文章目录一.Google论文与开源二.Google论文简介2.1 起源2.2 基础设施2.3 计算分析系统2.4 存储&数据库2.5 AI三.总结一.Google论文与开源自1998年成立,至今Google已走过20个年头。在这20年里,Google不断地发表一些对于自己来说已经过时甚至不再使用的技术的论文,但是发表之后总会有类似系统被业界实现出来,也足以说明google的技术至少领先业界数年。在Amazon不断引领全球云计算浪潮开发出一系列面向普罗大众的云产品的同时;Google也在不断引领构

2020-11-04 12:18:27 10570 13

原创 Flink Join

一.简介Flink DataStream API中内置有两个可以根据实际条件对数据流进行Join算子:基于间隔的Join和基于窗口的Join。语义注意事项创建两个流元素的成对组合的行为类似内连接,如果来自一个流的元素与另一个流没有相对应要连接的元素,则不会发出该元素。结合在一起的那些元素将其时间戳设置为位于各自窗口中最大时间戳。例如:以[5,10]为边界的窗口将产生连接的元素的时间戳为9。二.窗口Join2.1 翻滚窗口(Tumbling Window Join)执行滚动窗口连接(Tu

2020-10-30 20:35:39 1053 1

原创 Java内存模型(解决可见性和有序性问题)

文章目录一.简介二.内存模型三.Happens-Before 规则3.1 规则3.2 final一.简介JMM是一个规范,感兴趣可以查看JSR113标准,描述了JVM平台上多线程程序的语义,具体包括一个线程对共享变量的写入何时能被其他线程“看到”。二.内存模型当指令在CPU上运行的时候,会先将运算需要的数据从内存中复制一份到CPU的高速缓存当中,那么CPU进行计算时就可以直接从它的高速缓存读取数据和向其中写入数据,当运算结束之后,再将高速缓存中的数据刷新到主存当中。(现代CPU其实是有多级缓存的,但

2020-10-24 18:04:00 1902 3

原创 计算机基本组成

文章目录一.简介二.计算机组成2.1 计算机基本硬件组成2.2 冯·诺依曼体系结构2.2.1 可编程计算机2.2.2 存储计算机2.2.3 第一份草案2.3 组成原理知识地图三.性能3.1 什么是性能?时间的倒数3.2 计算机的计时单位:CPU时钟四.功耗4.1 功耗:CPU 的“人体极限”4.2 并行优化,理解阿姆达尔定律4.3 原则性的性能提升方法一.简介“练拳不练功,到老一场空”。计算机底层原理,跟上层思想紧密相连。二.计算机组成2.1 计算机基本硬件组成CPU计算机最重要的核心配件,

2020-10-24 14:48:51 354

原创 算法复杂度

文章目录一.简介二.大O表示法三.时间复杂度分析3.1 只关注循环执行次数最多的一段代码3.2 加法法则:总复杂度等于量级最大的那段代码的复杂度3.3 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积3.4 常见时间复杂度实例分析3.5 最好、最坏情况时间复杂度3.6 平均情况时间复杂度3.7 均摊时间复杂度四.空间复杂度分析一.简介数据结构和算法本身解决的是如何让代码运行得更快,如何让代码更省存储空间。计算算法占时间和空间把代码跑一遍,通过统计、监控,就能得到算法执行的时间和占用内存大小

2020-10-24 01:14:49 205

原创 Flink Checkpoint/Savepoint

一.CheckPoints为了使Flink的状态具有良好的容错性,Flink提供了检查点机制(Checkpoints)。通过检查点机制,Flink定期在数据流上生成checkpoint barrier ,当某个算子收到barrier时,即会基于当前状态生成一份快照,然后再将该barrier传递到下游算子,下游算子接收到该barrier后,也基于当前状态生成一份快照,依次传递直至到最后的Sink算子上。当出现异常后,Flink 就可以根据最近的一次的快照数据将所有算子恢复到先前的状态。开启检查点默

2020-10-22 14:45:46 364 2

原创 Flink 处理函数

文章目录一.简介二.函数三.时间服务和计时器3.1 简介3.2 示例四.副输出/侧输出(SideOutput)4.1 简介4.2 示例一.简介时间信息和Watermark对很多流式应用至关重要,无法用DataStream API转换来访问它们。DataStream API提供了一组相对底层的转换——处理函数。除了基本功能,它们还可以访问记录的时间戳和水位线,并支持注册在将来某个特点时间出发计时器。处理函数的副输出功能还允许将记录发送到多个输出流中。二.函数Flink提供了8种不同处理函数:P

2020-10-21 19:40:12 476

原创 Flink StateBackend 状态后端示例

状态管理地址:Flink 状态管理文章目录一.简介二.MemoryStateBackend三.FsStateBackend四.RocksDBStateBackend五.设置一.简介Flink提供三种可用的状态后端:MemoryStateBackend,FsStateBackend,和RocksDBStateBackend。场景MemoryStateBackend:本地开发或调试。小状态场景。FsStateBackend:大状态,长窗口或大键值状态。高可用场景。RocksDB

2020-10-19 18:35:49 381 2

原创 IDEA 插件开发实战

一. 简介IntelliJ IDEA是一款开发工具,提供很多插件功能,比如阿里规范插件(Alibaba Java Coding Guidelines),但是随着日常业务展开,很多工作重复性编码,浪费很多时间,需要自定义抽象出来一些插件,自动化的方式解决问题,这也是工程师文化的体现。二.原理2.1 背景IntelliJ平台是开源的,基于Apache许可协议,提供很多丰富的工具,提供组件驱动,基于跨平台JVM,可以在创建菜单栏、列表、弹出菜单、对话框等等。可以适用于多种语言,提供相关解析器和PSI模型,

2020-10-17 11:35:14 5191 8

mondrian-3.11

重新编译过,连接池,编码,版本3.11

2017-04-11

数学分析三大基本思想之变换

广义的变换应该作为一种思想 来理解,即对某个数学对象进行操作,转化为另一个对象,要求后者相对容易 处理。

2018-08-05

数学分析三大基本思想之逼近

但凡事大都有主要矛盾,学数学分析也应该抓主要思想。根据笔者这些年对 数学分析的体会,感觉有三大基本思想是数学分析的核心,逼近、变换和分解。 围绕微分、积分和级数这三大主题,展开上述三大基本思想,构成了数学分析 的主干。不论是初学者,还是重温者,抓住上面的主干,就有了方向。本章先 介绍数学分析第一大基本思想:逼近。

2018-08-05

基于注解的ssm crud的项目

基于注解的ssm crud的项目,有restful,事务也是注解 springmvc+spring+mybatis

2016-10-04

plsql developer 11.zip

oracle连接工具,plsql developer 11+instantclient_11_2(32位),我自己测试完了可以用,配置环境变量,listener.ora,tnsnames.ora就可以使用

2019-07-22

数学分析三大基本思想之分解

这样一种数学思想: 将一个复杂的结构或问题,分解成若 干子结构,使得这些子结构尽可能简单 。若按照广义理解,从一个复杂问题中 分离出主要矛盾,这也是一种分解思想。

2018-08-05

自定义rpc框架

RPC—远程过程调用协议,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。此项目用的是java+netty+zookeeper构建的自定义rpc框架。

2018-09-29

hadoop-2.6.1.zip

Could not locate executabl ....\hadoop-2.2.0\hadoop-2.2.0\bin\winutils.exe in the Hadoop binaries,本地环境缺失winutil.exe,请下载后配置环境变量

2020-06-16

hadoop2.4.1伪分布式搭建

hadoop2.4.1伪分布式搭建

2016-10-13

solr安装和介绍

详细solr安装和介绍

2017-06-06

html4 自适应

html4 自适应

2016-10-20

hadoop2.7.2

2.7.2使用2.2的hadoop.dll和winutils.exe是会报错的,并不能正常使用,现在送上一个管用的~64位的

2017-04-26

《Spark GraphX实战》_时金魁.pdf

图提供了一种强大的方式来表示和利用数据间的连接。图表示由顶点和顶点连接的边构成的数据点网络。图可以用于各种领域,如计算机视觉、自然语言处理和 推荐系统等。 GraphX 是一个在Spark 之上的图处理层,带来了因为图数据太大单机无法处理的强大的图大数据处理能力。很久之前人们就开始在图处理方面使用Spark ,包括 B age l 这类预处理模块,现在有了标准的图计算模块G raphX ,它提供了一些常用的图算法库。

2019-06-30

media方法简介

viewport(media)

2017-03-01

ambari安装

详细ambari安装文档

2017-06-06

h5下nav导航

nav导航

2017-03-01

js通用方法

EVENT,集合类,TEXT,CHECKBOX,多选列表,DOM,系统,弹出层,布局调整,页签,拖拽,固定表头,异步请求,分页,下拉菜單,ztree树操作,表格树,提示消息

2018-04-01

viewport响应式模板

viewport响应式模板

2017-03-01

redis详细笔记

1、redis介绍 2、redis安装启动(重点) 3、redis客户端 4、redis数据类型(重点) 5、keys命令(了解) 6、redis的持久化 7、redis的主从复制 8、redis集群配置(重点) 9、redis集群连接(重点)

2016-10-04

大数据时代总结

大数据的核心就是预测。它通常被视为人工智能的一部分,或者更确切地说,被视为一种 机器学习。但是这种定义是有误导性的。大数据不是要教机器像人一样思考。相反,它是把数 学算法运用到海量的数据上来预测事情发生的可能性。

2018-08-05

html5+css3布局简介

html5+css3布局简介,一种抛弃div布局的一种思想

2017-02-25

微信小程序

针对微信小程序的一些整理

2017-04-11

基于注解ssh的通用dao的crud

基于注解ssh的通用dao的crud,spring4+struts2+hibernate4

2016-10-04

CSDN统计和专栏申请

发表于 2018-10-08 最后回复 2018-10-08

CSDN统计和专栏申请

发表于 2018-10-01 最后回复 2018-10-08

CSDN专栏问题

发表于 2018-09-29 最后回复 2018-09-29

博客搬家到CSDN

发表于 2018-09-21 最后回复 2018-09-27

https://me.csdn.net/

发表于 2018-09-25 最后回复 2018-09-25

信息栏统计的数值不对应

发表于 2018-09-25 最后回复 2018-09-25

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除